नीचे दी गई प्रेक्षणों के दो समूहों की सांख्यिकी का विचार कीजिए
आकार | माध्य | प्रसरण | |
प्रेक्षण $I$ | $10$ | $2$ | $2$ |
प्रेक्षण $II$ | $n$ | $3$ | $1$ |
यदि इन दोनों प्रेक्षणों को मिलाकर बने समूह का प्रसरण $\frac{17}{9}$ है, तो $n$ का मान बराबर है
$8$
$10$
$5$
$15$
$8$ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $10$ तथा $13.5$ है। यदि इनमें से $6$ प्रेक्षण $5,7,10,12,14,15$ हैं, तो शेष दो प्रेक्षणों का निरपेक्ष अन्तर होगा
एक समूह की पाँच संख्याओं का माध्य $8$ तथा प्रसरण $18$ है तथा दूसरे समूह की $3$ संख्याओं का माध्य $8$ तथा प्रसरण $24$ है। तब संख्याओं के संयुक्त समूह का प्रसरण है
निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
प्रथम $n$ प्राकृत संख्याएँ
किसी समूह के प्रेक्षणों ${x_1},\,{x_2},\,.....{x_n}$ के लिये परिसर $r$ तथा मानक विचलन ${S^2} = \frac{1}{{n - 1}}\sum\limits_{i = 1}^n {{{({x_i} - \bar x)}^2}} $ हैं, तब